IDEAS home Printed from
   My bibliography  Save this paper

Bandwidth Selection for Semiparametric Estimators Using the m-out-of-n Bootstrap


  • Chuan Goh


This paper considers a class of semiparametric estimators that take the form of density-weighted averages. These arise naturally in a consideration of semiparametric methods for the estimation of index and sample-selection models involving preliminary kernel density estimates. The question considered in this paper is that of selecting the degree of smoothing to be used in computing the preliminary density estimate. This paper proposes a bootstrap method for estimating the mean squared error and associated optimal bandwidth. The particular bootstrap method suggested here involves using a resample of smaller size than the original sample. This method of bandwidth selection is presented with specific reference to the case of estimators of average densities, of density-weighted average derivatives and of density-weighted conditional covariances.

Suggested Citation

  • Chuan Goh, 2007. "Bandwidth Selection for Semiparametric Estimators Using the m-out-of-n Bootstrap," Working Papers tecipa-274, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-274

    Download full text from publisher

    File URL:
    File Function: Main Text
    Download Restriction: no

    References listed on IDEAS

    1. Ariel Pakes & Michael Ostrovsky & Steven Berry, 2007. "Simple estimators for the parameters of discrete dynamic games (with entry/exit examples)," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 373-399, June.
    2. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    3. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    bandwidth selection; density-weighted averages; bootstrap; m-out-of-n bootstrap; kernel density estimation;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-274. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.