IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2009cf666.html
   My bibliography  Save this paper

Higher Order Corrections in MSE Estimation and Confidence Intervals in Linear Mixed Models

Author

Listed:
  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Abstract

The empirical best linear unbiased predictor (EBLUP) or the empirical Bayes estimator (EB) in the linear mixed model is recognized useful for the small area estimation, because it can increase the estimation precision by using the information from the related areas. Two of the measures of uncertainty of EBLUP is the estimation of the mean squared error (MSE) and the confidence interval, which have been studied under the second-order accuracy in the literature. This paper provides the general analytical results for these two measures in the unified framework, namely, we derive the conditions on the general consistent estimators of the variance components to satisfy the third-order accuracy in the MSE estimation and the confidence interval in the general linear mixed normal models. Those conditions are shown to be satisfied by not only the maximum likelihood (ML) and restricted maximum likelihood (REML), but also the other estimators including the Prasad-Rao and Fay-Herriot estimators in specific models.

Suggested Citation

  • Tatsuya Kubokawa, 2009. "Higher Order Corrections in MSE Estimation and Confidence Intervals in Linear Mixed Models," CIRJE F-Series CIRJE-F-666, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2009cf666
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.