IDEAS home Printed from
   My bibliography  Save this paper

Estimation of the Precision Matrix of a Singular Wishart Distribution and its Application in High Dimensional Data


  • Kubokawa, Tatsuya

    (Faculty of Economics, University of Tokyo)

  • Muni S. Srivastava

    (Department of Statistics, University of Toronto)


In this article, Stein-Haff identity is established for a singular Wishart distribution with a positive definite mean matrix but with the dimension larger than the degrees of freedom. This identity is then used to obtain estimators of the precision matrix improving on the estimator based on the Moore-Penrose inverse of the Wishart matrix under the Efron-Morris loss function and its variants. Ridge-type empirical Bayes estimators of the precision matrix are also given and their dominance properties over the usual one are shown using this identity. Finally, these precision estimators are used in a quadratic discriminant rule, and it is shown through simulation that the use of the ridge-type empirical Bayes estimators provides higher correct classication rates.

Suggested Citation

  • Kubokawa, Tatsuya & Muni S. Srivastava, 2005. "Estimation of the Precision Matrix of a Singular Wishart Distribution and its Application in High Dimensional Data," CIRJE F-Series CIRJE-F-362, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2005cf362

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2005cf362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.