IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On Minimaxity and Admissibility of Hierarchical Bayes Estimators

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

  • William E. Strawderman

    (Department of Statistics, Rutgers University)

Registered author(s):

    In the estimation of a mean vector of a multivariate normal distribution, the paper obtains conditions for minimaxity of hierarchical Bayes estimators against hierarchical prior distributions where three types of second stage priors are treated. Conditions for admissibility and inadmissibility of the hierarchical Bayes estimators are also derived by using the same arguments as in Berger and Strawderman (1996). Combining these results yields admissible and minimax hierarchical Bayes estimators.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-308.

    in new window

    Length: 29 pages
    Date of creation: Dec 2004
    Date of revision:
    Handle: RePEc:tky:fseres:2004cf308
    Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2004cf308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.