IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20250016.html
   My bibliography  Save this paper

New rank-based tests and estimators for Common Primitive Shocks

Author

Listed:
  • Federico Carlini

    (LUISS Business School)

  • Mirco Rubin

    (EDHEC Business School)

  • Pierluigi Vallarino

    (Erasmus University Rotterdam and Tinbergen Institute)

Abstract

We propose a new rank-based test for the number of common primitive shocks, q, in large panel data. After estimating a VAR(1) model on r static factors extracted by principal component analysis, we estimate the number of common primitive shocks by testing the rank of the VAR residuals’ covariance matrix. The new test is based on the asymptotic distribution of the sum of the smallest r − q eigenvalues of the residuals’ covariance matrix. We develop both plug-in and bootstrap versions of this eigenvalue-based test. The eigenvectors associated to the q largest eigenvalues allow us to construct an easy-to-implement estimator of the common primitive shocks. We illustrate our testing and estimation procedures with applications to panels of macroeconomic variables and individual stocks’ volatilities.

Suggested Citation

  • Federico Carlini & Mirco Rubin & Pierluigi Vallarino, 2025. "New rank-based tests and estimators for Common Primitive Shocks," Tinbergen Institute Discussion Papers 25-016/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20250016
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/25016.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20250016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.