IDEAS home Printed from https://ideas.repec.org/p/tcb/econot/2511.html
   My bibliography  Save this paper

Does Deep Learning Improve Forecast Accuracy of Crude Oil Prices? Evidence from a Neural Network Approach

Author

Listed:
  • Altug Aydemir
  • Mert Gokcu

Abstract

[EN] In recent years, machine learning-based techniques have gained prominence in forecasting crude oil prices due to their ability effectively handle the highly volatile and nonlinear nature of oil prices. The primary objective of this paper is to forecast monthly oil prices with the highest level of precision and accuracy possible. To do this, we propose a deepened and high-parametrized version of the deep neural network model framework that integrates widely adopted algorithms and a variety of datasets. Additionally, our approach involves the optimal architecture for deep neural networks used in oil price forecasting and offers forecasts that are repeatable and consistent. All the evaluation metrics values indicate that the proposed model achieves superior forecasting performance compared to some simple conventional statistical models. [TR] Son zamanlarda, makine ogrenimi tabanli yontemler, petrol fiyatlarinin son derece oynak ve dogrusal olmayan dogasi ile etkin bir sekilde basa cikma yetenekleri sayesinde ham petrol fiyatlarini tahmin etmede onem kazanmistir. Bu calismanin temel amaci, aylik bazda petrol fiyatlarini mumkun olan en yuksek hassasiyet ve dogrulukla tahmin etmektir. Bunu yapmak icin, ham petrol fiyat tahmini icin iyi bilinen algoritmalari ve cesitli veri kumelerini kullanan derin sinir agi modeli cercevesinin derinlestirilmis ve yuksek parametreli bir versiyonunu oneriyoruz. Ayrica, yaklasimimiz petrol fiyat tahmininde kullanilan derin sinir aglari icin en uygun mimariyi icermekte ve tekrarlanabilir ve tutarli tahminler sunmaktadir. Tum degerlendirme metrik degerleri, onerilen modelimizin geleneksel yontemlere kiyasla tahmin performansinda onemli bir iyilesmeye sahip oldugunu gostermektedir.

Suggested Citation

  • Altug Aydemir & Mert Gokcu, 2025. "Does Deep Learning Improve Forecast Accuracy of Crude Oil Prices? Evidence from a Neural Network Approach," CBT Research Notes in Economics 2511, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  • Handle: RePEc:tcb:econot:2511
    as

    Download full text from publisher

    File URL: https://www.tcmb.gov.tr/wps/wcm/connect/3249f712-5677-487e-9f78-58bafcffc43e/en202511.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-3249f712-5677-487e-9f78-58bafcffc43e-pw7GKN7
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    2. Nasir, Muhammad Ali & Balsalobre-Lorente, Daniel & Huynh, Toan Luu Duc, 2020. "Anchoring inflation expectations in the face of oil shocks & in the proximity of ZLB: A tale of two targeters," Energy Economics, Elsevier, vol. 86(C).
    3. Jiao, Jing-Wen & Yin, Jun-Ping & Xu, Ping-Feng & Zhang, Juan & Liu, Yuan, 2023. "Transmission mechanisms of geopolitical risks to the crude oil market——A pioneering two-stage geopolitical risk analysis approach," Energy, Elsevier, vol. 283(C).
    4. Guo, Lili & Huang, Xinya & Li, Yanjiao & Li, Houjian, 2023. "Forecasting crude oil futures price using machine learning methods: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    5. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    6. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    8. Lee, Chien-Chiang & Olasehinde-Williams, Godwin & Özkan, Oktay, 2023. "Geopolitical oil price uncertainty transmission into core inflation: Evidence from two of the biggest global players," Energy Economics, Elsevier, vol. 126(C).
    9. Youshu Li & Junjie Guo, 2022. "The asymmetric impacts of oil price and shocks on inflation in BRICS: a multiple threshold nonlinear ARDL model," Applied Economics, Taylor & Francis Journals, vol. 54(12), pages 1377-1395, March.
    10. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    11. Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
    12. Deluna, Roperto S. & Loanzon, Jeanette Isabelle V. & Tatlonghari, Virgilio M., 2021. "A nonlinear ARDL model of inflation dynamics in the Philippine economy," Journal of Asian Economics, Elsevier, vol. 76(C).
    13. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    14. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    15. Qin, Yun & Hong, Kairong & Chen, Jinyu & Zhang, Zitao, 2020. "Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions," Energy Economics, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianle & Dong, Qingyuan & Du, Min & Du, Qunyang, 2023. "Geopolitical risks, oil price shocks and inflation: Evidence from a TVP–SV–VAR approach," Energy Economics, Elsevier, vol. 127(PB).
    2. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    3. Yilmazkuday, Hakan, 2024. "Geopolitical risks and energy uncertainty: Implications for global and domestic energy prices," Energy Economics, Elsevier, vol. 140(C).
    4. Zhang, Hongwei & Wang, Wentao & Niu, Zibo, 2024. "Geopolitical risks and crude oil futures volatility: Evidence from machine learning," Resources Policy, Elsevier, vol. 98(C).
    5. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    6. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    7. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    8. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    9. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    10. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    11. Loc Dong Truong & Nhien Tuyet Doan & Anh Thi Kim Nguyen, 2024. "The Effects of Geopolitical Risks on Oil Price Volatility," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 427-432, January.
    12. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    13. Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024. "Forecasting realized volatility of crude oil futures prices based on machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
    14. Wang, Donghua & Fang, Tianhui, 2025. "Study on influencing factors and forecast of global crude oil prices based on the hybrid model," Energy, Elsevier, vol. 328(C).
    15. Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
    16. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
    17. Pham T. T. Trinh & Bui T. T. My, 2023. "The impact of world oil price shocks on macroeconomic variables in Vietnam: the transmission through domestic oil price," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(1), pages 67-87, May.
    18. Lutz Kilian, 2010. "Oil Price Shocks, Monetary Policy and Stagflation," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    19. Aharon, David Y. & Azman Aziz, Mukhriz Izraf & Kallir, Ido, 2023. "Oil price shocks and inflation: A cross-national examination in the ASEAN5+3 countries," Resources Policy, Elsevier, vol. 82(C).
    20. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcb:econot:2511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tcmgvtr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.