IDEAS home Printed from https://ideas.repec.org/p/syb/wpbsba/2123-13800.html
   My bibliography  Save this paper

Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Range and Realized Measures

Author

Listed:
  • Gerlach, Richard
  • Wang, Chao

Abstract

A new framework named Realized Conditional Autoregressive Expectile (Realized- CARE) is proposed, through incorporating a measurement equation into the conventional CARE model, in a framework analogous to Realized-GARCH. The Range and realized measures (Realized Variance and Realized Range) are employed as the dependent variables of the measurement equation, since they have proven more efficient than return for volatility estimation. The dependence between Range & realized measures and expectile can be modelled with this measurement equation. The grid search accuracy of the expectile level will be potentially improved with introducing this measurement equation. In addition, through employing a quadratic fitting target search, the speed of grid search is significantly improved. Bayesian adaptive Markov Chain Monte Carlo is used for estimation, and demonstrates its superiority compared to maximum likelihood in a simulation study. Furthermore, we propose an innovative sub-sampled Realized Range and also adopt an existing scaling scheme, in order to deal with the micro-structure noise of the high frequency volatility measures. Compared to the CARE, the parametric GARCH and the Realized-GARCH models, Value-at-Risk and Expected Shortfall forecasting results of 6 indices and 3 assets series favor the proposed Realized-CARE model, especially the Realized-CARE model with Realized Range and sub-sampled Realized Range.

Suggested Citation

  • Gerlach, Richard & Wang, Chao, 2015. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Range and Realized Measures," Working Papers 2015-07, University of Sydney Business School, Discipline of Business Analytics.
  • Handle: RePEc:syb:wpbsba:2123/13800
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2123/13800
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.

    More about this item

    Keywords

    Expected Shortfall; Value-at-Risk; Target Search; Markov Chain Monte Carlo; Subsampling Realized Range; Realized Range; Realized Variance; Realiz ed-CARE;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:syb:wpbsba:2123/13800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Artem Prokhorov (email available below). General contact details of provider: https://edirc.repec.org/data/sbsydau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.