IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The predictive ability of poverty models. Empirical Evidence from Uganda

Listed author(s):
Registered author(s):

    This paper examines the performance of a particular method for predicting poverty. The method is a supplement to the approach of measuring poverty through a fully-fledged household expenditure survey. As most developing countries cannot justify the expenses of frequent household expenditure surveys, low cost methods are of interest, and such models have been developed and used. The basic idea is a model for predicting the proportion of poor households in a population based on estimates from a total consumption regression relation, using data from a household expenditure survey. As a result, the model links the proportion of poor households to the explanatory variables of the consumption relation. These explanatory variables are fast to collect and are easy to measure. Information on the explanatory variables may be collected through annual light surveys. Several applications have shown that this information, together with the poverty model, can produce poverty estimates with confidence intervals of a similar magnitude as the poverty estimates from the household expenditure surveys. There is, however, limited evidence for how well the methods perform in predicting poverty from other surveys. A series of seven household expenditure surveys conducted in Uganda in the period 1993-2006 are available, allowing us to test the predictive ability of the models. We have tested the poverty models by using data from one survey to predict the proportion of poor households in other surveys, and vice versa. All the models predict similar poverty trends, whereas the respective levels are predicted differently. Although in most cases the predictions are precise, sometimes they differ significantly from the poverty level estimated from the survey directly. A long time span between surveys may explain some of these cases, as do large and sudden changes in poverty.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Statistics Norway, Research Department in its series Discussion Papers with number 560.

    in new window

    Date of creation: Oct 2008
    Handle: RePEc:ssb:dispap:560
    Contact details of provider: Postal:
    P.O.Box 8131 Dep, N-0033 Oslo, Norway

    Phone: (+47) 21 09 00 00
    Fax: +47 - 62 88 55 95
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:560. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.