IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A prediction approach to sampling design

Listed author(s):
Registered author(s):

    Standard approaches to sample surveys take as the point of departure the estimation of one or several population totals (or means), or a few predefined sub-totals (or sub-means). While the model-based prediction approach provides an attractive framework for estimation and inference, a model-based theory for the variety of randomization sampling designs has been lacking. In this paper we extend the model-based approach to the prediction of individuals in addition to totals and means. Since, given the sample, the conditional prediction error is zero for the selected units but positive for the units outside of the sample, it is possible to use the sampling design to control the unconditional individual prediction mean square errors. This immediately raises the need for probability sampling. It turns out that balancing between optimal prediction of the population total and control over individual predictions provides a fruitful model-based approach to sampling design. Apart from raising the need for probability sampling in general, it leads naturally to a number of important design features that are firmly established in the sampling practice, including the use of simple random sampling for homogeneous populations and unequal probability sampling otherwise, the division of a business population into the take-all, take-some and take-none units, the most common two-stage sampling designs, the use of stratification with proportional allocation, etc.. Most of them have not received adequate model-based treatment previously. Our approach enables us to give an appraisal of these methods from a prediction point of view.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Statistics Norway, Research Department in its series Discussion Papers with number 440.

    in new window

    Date of creation: Dec 2005
    Handle: RePEc:ssb:dispap:440
    Contact details of provider: Postal:
    P.O.Box 8131 Dep, N-0033 Oslo, Norway

    Phone: (+47) 21 09 00 00
    Fax: +47 - 62 88 55 95
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.