IDEAS home Printed from
   My bibliography  Save this paper

Two-Stage Sampling from a Prediction Point of View




This paper considers the problem of estimating the population total in two-stage cluster sampling when cluster sizes are unknown, making use of a population model arising basically from a variance component model. The problem can be considered as one of predicting the unobserved part Z of the total, and the concept of predictive likelihood is studied. Prediction intervals and a predictor for the population total are derived for the normal case, based on predictive likelihood. The predictor obtained from the predictive likelihood is shown to be approximately uniformly optimal for large sample size and large number of clusters, in the sense of uniformly minimizing the mean square error in a partially linear class of model-unbiased predictors. Three prediction intervals for Z based on three similar predictive likelihoods are studied. For a small number n0 of sampled clusters they differ significantly, however, for large n0 the three intervals are practically identical. Model-based and design-based coverage properties of the prediction intervals are studied based on a comprehensive simulation study. Roughly, the simulation study indicates that for large sample sizes the coverage measures achieve approximately the nominal level 1 - á and are slightly less than 1 - á for moderately large sample sizes. For small sample sizes the coverage measures are about 95% of the nominal level.

Suggested Citation

  • Jan F. Bjørnstad & Elinor Ytterstad, 2004. "Two-Stage Sampling from a Prediction Point of View," Discussion Papers 383, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:383

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Survey sampling; population model; predictive likelihood; optimal predictor; prediction intervals; simulation;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:383. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.