IDEAS home Printed from https://ideas.repec.org/p/sin/wpaper/09-a009.html
   My bibliography  Save this paper

Monitoring Structural Changes in Regression with Long Memory Processes

Author

Abstract

This paper extends the °uctuation monitoring test of Chu et al. (1996) to the regression model involving stationary or nonstationary long memory regressors and errors by proposing two innovative on-line detectors. In spite of the general framework covered by these detectors, their computational cost is extremely mild in that they do not depend on the bootstrap procedure and do not involve the di±cult issues of choosing a kernel function, a bandwidth parameter, or an autoregressive lag length for the long-run variance estimation. Moreover, under suitable regularity conditions and the null hypothesis of no structural change, the asymptotic distributions of these two detectors are identical to that of the corresponding counterpart considered in Chu et al. (1996) where they consider the short memory processes

Suggested Citation

  •  Wen-Jen Tsay, 2009. "Monitoring Structural Changes in Regression with Long Memory Processes," IEAS Working Paper : academic research 09-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  • Handle: RePEc:sin:wpaper:09-a009
    as

    Download full text from publisher

    File URL: http://www.econ.sinica.edu.tw/upload/file/09-A009(all)new.2009120714391335.pdf
    Download Restriction: no

    More about this item

    Keywords

    Structural stability; Long memory process; Fluctuation monitoring;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:09-a009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (HsiaoyunLiu). General contact details of provider: http://edirc.repec.org/data/sinictw.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.