Author
Abstract
This research proposes the preference vector modeling (PVM) to deal with polarity shifts for improvement of sentiment classification for word of mouth (WOM). WOM has become a main information resource of consumers while making business or buying strategies. A polarity shift happens when the sentiment polarity of a term is different from that of its associated WOM document, which is one of the most difficult issues in the field of opinion mining. Traditional opinion mining approaches depend on predefined sentiment polarities of terms to be accumulated as the WOM?s sentiment polarity or to be trained based on machine learning techniques, but ignore the significance of polarity shift due to some specific usage of terms. There are two kinds of approaches used for detection of polarity shifts in the literature, which are rule-based approaches and machine learning approaches. However, it is hard for a rule-based approach to manually define a complete rule set. The machine learning approach, which is based on the vector space model (VSM), suffers from the curse of dimensionality. Therefore, this research proposes a novel approach to deal with polarity shifts for sentiment analysis because of the weakness of existing research in the literature. Firstly, this research proposes PVM based on an integration of opinionated documents and a star ranking system. The dimensionality of preference vectors equals the number of the star ranking system. Thus, the proposed PVM overcomes the curse of dimensionality as the number of dimensionality of the star ranking system is much fewer than that of the document vector based on VSM. Then, the automatic approach for polarity shift detection is proposed. The document preference vector is represented based on the average vector of term preference vectors. This way is able to deal with opinionated documents if they are extracted from the same scale of the star ranking systems and the same domain. Finally, the integrated approach of PVM and some classification techniques is used for improvement of sentiment classification for word of mouth.
Suggested Citation
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
JEL classification:
- D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
- L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
NEP fields
This paper has been announced in the following
NEP Reports:
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:6508391. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.