IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems

Listed author(s):

We present optimality conditions for bilevel optimal control problems where the upper level, to be solved by a leader, is a scalar optimal control problem and the lower level, to be solved by several followers, is a multiobjective convex optimal control problem. Multiobjective optimal control problems arise in many application areas where several conflicting objectives need to be considered. Minimize several objective functionals leads to solutions such that none of the objective functional values can be improved further without deteriorating another. The set of all such solutions is referred to as efficient (also called Pareto optimal, noninferior, or nondominated) set of solutions. The lower level of the semivectorial bilevel optimal control problems can be considered to be associated to a ”grande coalition” of a p-player cooperative differential game, every player having its own objective and control function. We consider situations in which these p-?players react as ”followers” to every decision imposed by a ”leader” (who acts at the so-called upper level). The best reply correspondence of the followers being in general non uniquely determined, the leader cannot predict the followers choice simply on the basis of his rational behavior. So, the choice of the best strategy from the leader point of view depends of how the followers choose a strategy among his best responses. In this paper, we will consider two (extreme) possibilities: (i) the optimistic situation, when for every decison of the leader, the followers will choose a strategy amongst the efficient controls which minimizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the best he can obtain amongst all the best responses of the followers: (ii) the pessimistic situation, when the followers can choose amongst the efficient controls one which maximizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the worst he could obtain amongst all the best responses of the followers. This paper continues the research initiated in [17] where existence results for these problems have been obtained.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy in its series CSEF Working Papers with number 301.

in new window

Date of creation: 19 Dec 2011
Publication status: Published in Computational and Analytical Mathematics, H.Bauschke & M.Théra eds., 2012.
Handle: RePEc:sef:csefwp:301
Contact details of provider: Postal:
I-80126 Napoli

Phone: +39 081 - 675372
Fax: +39 081 - 675372
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:301. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lia Ambrosio)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.