IDEAS home Printed from
   My bibliography  Save this paper

Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems




We present optimality conditions for bilevel optimal control problems where the upper level, to be solved by a leader, is a scalar optimal control problem and the lower level, to be solved by several followers, is a multiobjective convex optimal control problem. Multiobjective optimal control problems arise in many application areas where several conflicting objectives need to be considered. Minimize several objective functionals leads to solutions such that none of the objective functional values can be improved further without deteriorating another. The set of all such solutions is referred to as efficient (also called Pareto optimal, noninferior, or nondominated) set of solutions. The lower level of the semivectorial bilevel optimal control problems can be considered to be associated to a ”grande coalition” of a p-player cooperative differential game, every player having its own objective and control function. We consider situations in which these p-?players react as ”followers” to every decision imposed by a ”leader” (who acts at the so-called upper level). The best reply correspondence of the followers being in general non uniquely determined, the leader cannot predict the followers choice simply on the basis of his rational behavior. So, the choice of the best strategy from the leader point of view depends of how the followers choose a strategy among his best responses. In this paper, we will consider two (extreme) possibilities: (i) the optimistic situation, when for every decison of the leader, the followers will choose a strategy amongst the efficient controls which minimizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the best he can obtain amongst all the best responses of the followers: (ii) the pessimistic situation, when the followers can choose amongst the efficient controls one which maximizes the (scalar) objective of the leader; in this case the leader will choose a strategy which minimizes the worst he could obtain amongst all the best responses of the followers. This paper continues the research initiated in [17] where existence results for these problems have been obtained.

Suggested Citation

  • Henry Bonnel & Jacqueline Morgan, 2011. "Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems," CSEF Working Papers 301, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:301

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    2. M. Beatrice Lignola & Jacqueline Morgan, 2017. "Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 183-202, April.
    3. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.