IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Approximations of Quasi-Variational Problems Including Social Nash Equilibria in Abstract Economies

Listed author(s):

We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy in its series CSEF Working Papers with number 268.

in new window

Date of creation: 11 Dec 2010
Date of revision: 07 Feb 2012
Publication status: Published with the title "Stability in Regularized Quasi-variational Setting" in Journal of Convex Analysis, 2012, 19(4), 1091-1107
Handle: RePEc:sef:csefwp:268
Contact details of provider: Postal:
I-80126 Napoli

Phone: +39 081 - 675372
Fax: +39 081 - 675372
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:268. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lia Ambrosio)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.