IDEAS home Printed from
   My bibliography  Save this paper

Approximations of Quasi-Variational Problems Including Social Nash Equilibria in Abstract Economies




We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.

Suggested Citation

  • M. Beatrice Lignola & Jacqueline Morgan, 2010. "Approximations of Quasi-Variational Problems Including Social Nash Equilibria in Abstract Economies," CSEF Working Papers 268, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 07 Feb 2012.
  • Handle: RePEc:sef:csefwp:268

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    quasi-variational; social Nash equilibria; approximate solution; closed map; lower semicontinuous map; upper stability; lower stability;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.