IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/472.html
   My bibliography  Save this paper

A New Optimization Approach to Maximum Likelihood Estimation of Structural Models

Author

Listed:
  • Ken Judd

    (Hoover Institution)

  • Che-Lin Su

    (Northwestern University)

Abstract

Maximum likelihood estimation of structural models is regarded as computationally difficult by many who want to apply the Nested Fixed-Point approach. We present a direct optimization approach to the problem and show that it is significantly faster than the NFXP approach when applied to the canonical Zurcher bus repair model. The NFXP approach is inappropriate for estimating games since it requires finding all Nash equilibria of a game for each parameter vector considered, a generally intractable computational problem. We reformulate the problem of maximum likelihood estimation of games as an optimization problem qualitatively no more difficult to solve than standard maximum likelihood estimation problems. The direct optimization approach is also applicable to other structural estimation problems such as auctions and RBC models, and also to other estimation strategies, such as the methods of moments. It is also easily implemented on standard software implementing state-of-the-art nonlinear programming algorithms

Suggested Citation

  • Ken Judd & Che-Lin Su, 2006. "A New Optimization Approach to Maximum Likelihood Estimation of Structural Models," Computing in Economics and Finance 2006 472, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:472
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjog Misra, 2013. "Markov chain Monte Carlo for incomplete information discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 11(1), pages 117-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.