IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

New Dimensions in Portfolio Optimization

  • S. Nagornii

    (QuantInvest BV)

  • D. Widijanto

    (BNG Capital Management)

Registered author(s):

    In a traditional mean-variance approach a portfolio is represented by the allocation vector optimized in terms of expected returns and variances. Basic assumption is that the allocation vector may only be the driver of a portfolio risk-reward trade-off, while all constituent assets are fully specified by constant expected returns and variances. It is not the case, however, for fixed income asset classes, or any assets whose risk-return profile may be a functional of external time-dependent factors. We show that the allocation problem on asset classes level cannot be complete without risk-sensitivities dimensions, as the allocation vector cannot fully specify the portfolio. The proposed approach is a generalization of the allocation problem when assets expected returns and variances might be driven by arbitrary exposures in multiple risk-dimensions. Those risk exposures may depend on investment policies, risk strategies, tactical views, etc. The expansion of the optimization space by the strategy specified risk-dimensions leads to a multi-dimensional mean-variance efficient surface, the efficient hyper-frontier. The analytical solution of multi-dimensional optimization problem is found as a function of the risk-sensitivity matrix. The dependence of optimal allocation decisions on asset sensitivities to interest rates, investment policies and risk strategies is analyzed. Practical implications for the tactical and strategic asset allocations are considered.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 459.

    in new window

    Date of creation: 04 Jul 2006
    Date of revision:
    Handle: RePEc:sce:scecfa:459
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:459. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.