IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Smooth Transition Autoregressive (STAR) Models

Listed author(s):
  • Dietmar Maringer

    (University of Essex)

  • Mark Meyer

    (University of Giessen)

Registered author(s):

    Non-linear modeling approaches, including Smooth Transition Autoregressive (STAR) models, have attracted a great deal of attention over the last two decades. The empirical application of these models, however, is not always a straightforward task. In particular, parameter estimation and identification of redundant parameters have not been addressed satisfactorily in the literature yet: There are no deterministic numerical methods -- let alone closed form solutions -- to solve these problems reliably. In empirical studies, we find that heuristic approaches such as Threshold Accepting or Evolutionary Methods are capable of solving these problems. Applied to STAR models, we were able to identify solutions that outperform benchmarks provided in the literature. This paper presents how to apply heuristics to the parameter estimation and the model selection problems. Based on computational studies, these methods are compared to traditional approaches

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 456.

    in new window

    Date of creation: 04 Jul 2006
    Handle: RePEc:sce:scecfa:456
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:456. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.