IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Mathematical methods of market risk valuation in application to Russian stock market

Listed author(s):
  • Andrey M. Boyarshinov


    (Computational Mathematics and Mechanics Perm State Technical University)

Registered author(s):

    This work is dedicated to comparative analysis and estimation of quantitative methods of risk valuation in application to Russian stock market, which include historical simulation, exponentially-weighted historical simulation, variance-covariance models with adaptive covariance matrix, variance-covariance models with exponentially-weighted adaptive covariance matrix, models based on GARCH(1,1), and Monte-Carlo Models. For the purpose of implementation of these models, algorithms of risk valuation have been developed on the basis of Value-at-Risk methodic as one of the most widely used and in accordance to RiskMetrics standards. Algorithms are implemented with usage of development environment of specialized decision support system software “Prognoz. Market risk†based on “Prognoz†analytical suite. The Decision support system mentioned above allows using different methods of risk measures calculation including standard and complex non-trivial methods. It also provides a capability to be individually tuned to better suit users’ requirements. For the purpose of backtesting of developed algorithms market risk measures were calculated using open data from Russian stock market (MICEX). For mentioned risk measures figures of quality and effectiveness were calculated, including average VaR exception value, average uncovered losses to VaR ratio, maximum loss to VaR ratio, average unused reserves, and multiplier to obtain coverage. Acquired results allowed distinguishing models which are insufficiently adequate if used in current situation on Russian stock market: models which use exponentially weighted historical simulation and some of models using variance-covariance approach. Other models can be taken as adequate with the significance level of 1% and 5%

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 127.

    in new window

    Date of creation: 04 Jul 2006
    Handle: RePEc:sce:scecfa:127
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.