IDEAS home Printed from
   My bibliography  Save this paper

Computational Experiments and Reality


  • John Geweke

    (University of Minnesota)


A common practice in macroeconomics is to assess the validity of general equilibrium models by first deriving their implications for population moments and then comparing population moments with observed sample moments. Generally the population moments are not explicit functions of model parameters, and so computational experiments are used to establish the link between parameters and moments. In most cases the general equilibrium models are intended to describe certain population moments (for example, means) but not others (for example, variances). The comparison of population moments with observed sample moments is informal, a process that has been termed calibration by some economists and ocular econometrics by others. This paper provides a formal probability framework within which this approach to inference can be studied. There are two principle results. First, if general equilibrium models are taken as predictive for sample moments, then the formal econometrics of model evaluation and comparison are straightforward. The fact that the models describe only a subset of moments presents no obstacles, and the formal econometrics yield as a byproduct substantial insights into the workings of models. Second, if general equilibrium models are taken to establish implications for population moments but not sample moments, then there is no link to reality because population moments are unobserved. Under this assumption, atheoretical macroeconomic models that link population and sample moments can be introduced coherently into the formal econometrics of model evaluation and comparison. The result is a framework that unifies general equilibrium models (theory without measurement) and atheoretical econometrics (measurement without theory). The paper illustrates these using some models of the equity premium.

Suggested Citation

  • John Geweke, 1999. "Computational Experiments and Reality," Computing in Economics and Finance 1999 401, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:401

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.