IDEAS home Printed from
   My bibliography  Save this paper

Extending the OLAP framework for automated explanatory tasks


  • Hennie Daniels
  • Emiel Caron


The purpose of OLAP (On-Line Analytical Processing) systems is to provide a framework for the analysis of multidimensional data. Many tasks related to analysing multidimensional data and making business decisions are still carried out manually by analysts (e.g. financial analysts, accountants, or business managers). An important and common task in multidimensional analysis is business diagnosis. Diagnosis is defined as finding the “best†explanation of observed symptoms. Today"s OLAP systems offer little support for automated business diagnosis. This functionality can be provided by extending the conventional OLAP system with an explanation formalism, which mimics the work of business decision makers in diagnostic processes. The central goal of this paper is the identification of specific knowledge structures and reasoning methods required to construct computerized explanations from multidimensional data and business models. We propose an algorithm that generates explanations for symptoms in multidimensional business data. The algorithm was tested on a fictitious case study involving the comparison of financial results of a firm"s business units

Suggested Citation

  • Hennie Daniels & Emiel Caron, 2004. "Extending the OLAP framework for automated explanatory tasks," Computing in Economics and Finance 2004 95, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:95

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
    2. Johann Peter Murmann & Thomas Brenner, 2003. "The Use of Simulations in Developing Robust Knowledge about Causal Processes: Methodological Considerations and an Application to Industrial Evolution," Computing in Economics and Finance 2003 66, Society for Computational Economics.
    3. Machlup, Fritz, 1978. "Methodology of Economics and Other Social Sciences," Elsevier Monographs, Elsevier, edition 1, number 9780124645509 edited by Shell, Karl.
    4. Franco Malerba & Luigi Orsenigo, 2002. "Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: towards a history-friendly model," Industrial and Corporate Change, Oxford University Press, vol. 11(4), pages 667-703, August.
    5. Schwerin, Joachim & Werker, Claudia, 2003. "Learning innovation policy based on historical experience," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 385-404, December.
    6. Dominique Foray & Robin Cowan, 2002. "Evolutionary economics and the counterfactual threat: on the nature and role of counterfactual history as an empirical tool in economics," Journal of Evolutionary Economics, Springer, vol. 12(5), pages 539-562.
    7. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press, vol. 8(1), pages 3-40, March.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.