IDEAS home Printed from
   My bibliography  Save this paper

A Strategy for Including Odd and Even-Numbered Higher Moments in Portfolio Selection


  • Renato G. Flores Jr
  • Gustavo M. de Athayde


Previous theoretical work by the authors has developed a framework for optimizing portfolio decisions when moments higher than the variance are considered. Apart a significant increase in computational complexity, inclusion of higher order moments implies a careful judgement on which cross-moments to choose as non-zero. The reason for this lies not only in that the number of cross-moments grows exponentially with the order (of the moment), making results more difficult to obtain and interpret, as well as in the fact that solutions can vary widely, depending on the zeros assigned to a given higher-order moments tensor. On the other hand, empirical evidence produced up to now shows that mean-variance solutions are usually not robust, so inclusion of some higher-order moments is a must. We try to outline criteria for setting up an optimal portfolio selection programme that tries to reconcile parsimony and simplicity of interpretation with the robustness acquired with the use of more moments. The criteria combine statistical (sample dependent) and theoretical considerations, to devise nearly-optimal rules to be applied in a concrete case. The rules can be easily translated to a dynamic setting. If the user accepts to include risk behaviour assumptions, the rules can be sharpened and the procedure becomes simpler. Though the framework is general, the paper focuses on the 3rd and 4th moment cases.

Suggested Citation

  • Renato G. Flores Jr & Gustavo M. de Athayde, 2004. "A Strategy for Including Odd and Even-Numbered Higher Moments in Portfolio Selection," Computing in Economics and Finance 2004 341, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:341

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Optimal portfolio choice; Robustness;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:341. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.