IDEAS home Printed from
   My bibliography  Save this paper

Coordination Dynamics under Collective and Random Fining Systems for Controlling Non-Point Source Pollution: A Simulation Approach with Genetic Algorithms


  • Eleni Samanidou


The paper considers the application of Genetic Algorithms (GA) on coordination games with non-point pollution controlling systems including collective and random fines. During the GA simulations populations continually switch between the two symmetric Nash equilibria of the game. Coordination of GA populations on the socially optimal (payoff dominant) abatement equilibrium is observable even for large group sizes, if the fine is chosen high enough compared to the abatement cost savings in the zero-abatement (risk dominant) equilibrium. The time, which populations spend in the socially optimal equilibrium, declines strongly with increasing group size. The outcome of the random fining mechanism depends crucially on the underlying risk attitude. Purely risk averse populations tend to coordinate on the socially optimal equilibrium. Further, we examine whether the findings of the GA application can explain some main results from a series of related experiments, which are currently conducted by the Laboratory of Experimental Economics at the University of Ki

Suggested Citation

  • Eleni Samanidou, 2004. "Coordination Dynamics under Collective and Random Fining Systems for Controlling Non-Point Source Pollution: A Simulation Approach with Genetic Algorithms," Computing in Economics and Finance 2004 267, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:267

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Andrés González & Timo Teräsvirta & Dick van Dijk & Yukai Yang, 1910. "Panel Smooth Transition Regression Models," CREATES Research Papers 2017-36, Department of Economics and Business Economics, Aarhus University.
    2. Steven J. Davis & John C. Haltiwanger & Scott Schuh, 1998. "Job Creation and Destruction," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262540932, July.
    3. Rothman, Philip, 1991. "Further evidence on the asymmetric behavior of unemployment rates over the business cycle," Journal of Macroeconomics, Elsevier, vol. 13(2), pages 291-298.
    4. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters,in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230 National Bureau of Economic Research, Inc.
    5. Filippo Altissimo & Giovanni L. Violante, 2001. "The non-linear dynamics of output and unemployment in the U.S," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 461-486.
    6. Fok, D. & van Dijk, D.J.C. & Franses, Ph.H.B.F., 2003. "A multi-level panel smooth transition autoregression for US sectoral production," Econometric Institute Research Papers EI 2003-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Marianne Sensier, 2003. "Inventories and asymmetric business cycle fluctuations in the UK: a structural approach," Applied Economics, Taylor & Francis Journals, vol. 35(4), pages 387-402.
    8. Jeremy Piger & James Morley & Chang-Jin Kim, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    9. Bidarkota Prasad V., 1999. "Sectoral Investigation of Asymmetries in the Conditional Mean Dynamics of the Real U.S. GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-12, January.
    10. McQueen, Grant & Thorley, Steven, 1993. "Asymmetric business cycle turning points," Journal of Monetary Economics, Elsevier, vol. 31(3), pages 341-362, June.
    11. Hans-Martin Krolzig & Michael P. Clements, 2002. "Can oil shocks explain asymmetries in the US Business Cycle?," Empirical Economics, Springer, vol. 27(2), pages 185-204.
    12. Scott Schuh & Robert K Triest, 1998. "Job Reallocation And The Business Cycle: New Facts An Old Debate," Working Papers 98-11, Center for Economic Studies, U.S. Census Bureau.
    13. Christopher L. Foote, 1998. "Trend Employment Growth and the Bunching of Job Creation and Destruction," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 809-834.
    14. Sichel, Daniel E, 1994. "Inventories and the Three Phases of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 269-277, July.
    15. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    16. Davis, Steven J. & Haltiwanger, John, 2001. "Sectoral job creation and destruction responses to oil price changes," Journal of Monetary Economics, Elsevier, vol. 48(3), pages 465-512, December.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Gert Peersman & Frank Smets, 2005. "The Industry Effects of Monetary Policy in the Euro Area," Economic Journal, Royal Economic Society, vol. 115(503), pages 319-342, April.
    19. W.A. Razzak, 2001. "Business Cycle Asymmetries: International Evidence," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 4(1), pages 230-243, January.
    20. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    21. Kiseok Lee & Shawn Ni & Ronald A. Ratti, 1995. "Oil Shocks and the Macroeconomy: The Role of Price Variability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 39-56.
    22. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    23. Krolzig, Hans-Martin & Sensier, Marianne, 2000. "A Disaggregated Markov-Switching Model of the Business Cycle in UK Manufacturing," Manchester School, University of Manchester, vol. 68(4), pages 442-460, Special I.
    24. Rothman Philip A, 2008. "Reconsideration of the Markov Chain Evidence on Unemployment Rate Asymmetry," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-18, September.
    25. Robert E. Hall, 1999. "Aggregate Job Destruction and Inventory Liquidation," NBER Working Papers 6912, National Bureau of Economic Research, Inc.
    26. Raymond, Jennie E & Rich, Robert W, 1997. "Oil and the Macroeconomy: A Markov State-Switching Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(2), pages 193-213, May.
    27. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    28. Randal Verbrugge Randal Verbrugge, 1997. "Investigating Cyclical Asymmetries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-10, April.
    29. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    30. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    31. Randal J. Verbrugge, 1998. "A cross-country investigation of macroeconomic asymmetries," Macroeconomics 9809017, EconWPA, revised 30 Sep 1998.
    32. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    coordination games; genetic algorithms; non-point pollution; group moral hazard; economic incentive mechanisms;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:267. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.