IDEAS home Printed from https://ideas.repec.org/p/sce/scecf1/46.html
   My bibliography  Save this paper

Stability Analysis of Heterogeneous Learning in Self-Referential Linear Stochastic Models

Author

Listed:
  • Chryssi Giannitsarou

Abstract

There is by now a large literature characterizing conditions under which learning schemes converge to rational expectations equilibria (REEs). A number of authors have claimed that these results are dependent on the assumption of homogeneous agents and homogeneous learning. We study the local stability of REEs under heterogeneous adaptive learning, for the broad class of self-referential linear stochastic models. We introduce three types of heterogeneity related to the way agents learn: different expectations, different degrees of inertia in updating, and different learning algorithms. We provide general conditions for local stability of an REE. Even though in general, hetereogeneity may lead to different stability conditions, we provide applications to various economic models where the stability conditions are identical to the conditions required under aggregation. This suggests that heterogeneity may affect the local stability of the learning scheme but that in most models aggregation works locally.

Suggested Citation

  • Chryssi Giannitsarou, 2001. "Stability Analysis of Heterogeneous Learning in Self-Referential Linear Stochastic Models," Computing in Economics and Finance 2001 46, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:46
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    adaptive learning; stability; heterogeneity;

    JEL classification:

    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.