IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Very High Order Lattice Methods for One Factor Models

Listed author(s):
  • Jonathan Alford and Nick Webber
Registered author(s):

    Lattice methods are often used to value derivative instruments. Multinomial lattice methods can in principle converge to the true value of the derivative to very high order. In this paper we describe how very high order multinomial lattices can be constructed and implemented when the SDE followed by the underlying state variable can be solved. We illustrate with comparisons between methods with branching order 3, 7, 11, 15 and 19 applied to a geometric Brownian motion. Incorporating both a terminal correction and appropriate truncation methods we find for the heptanomial lattice convergence rates at its theoretical maximum for European style options. With 50 time steps per year our errors are $O\\left( 10^{-11}\\right) $. With 100 time steps per year our errors are $O\\left( 10^{-13}\\right) $, approaching the practical limit of the accuracy obtainable in our implementation. We discuss alternative methods of enabling the heptanomial lattice to achieve high convergence rates for payoff functions with a finite number of critical points. As an example we value a binary option to a high degree of accuracy. We also investigate applications to American and Bermudan options. Based on our comparisons, we conclude that the heptanomial lattice is the fastest and most accurate of the lattices of higher order, and recommend its use as standard in many one factor lattice implementations.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2001 with number 26.

    in new window

    Date of creation: 01 Apr 2001
    Handle: RePEc:sce:scecf1:26
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.