IDEAS home Printed from
   My bibliography  Save this paper

Bifurcation Routes and Economic Stability


  • Miloslav S. Vosvrda


There are two basic tools to analyse fundamental issues in dynamical macroeconomics. One of them is a model of optimal growth describing savings behaviour. The second one is the Solow-Swan model with a constant aggregate propensity to save out of income. A steady state of the dynamical economic system corresponds to a growth path satisfying a stationary solution of a properly defined differential system and thus exhibiting certain conditions of constant growth rate in a single-sector model. One of possible mechanisms for regulating growth path is a savings rate. A regulation through the savings rate is made possible by distinguishing two types of income, two social classes or by introducing money and financial assets (see Henin(1986)). The standard neoclassical growth theory, Kaldor(1956), Pasinetti(1962), Samuelson and Modigliani (1966) were investigating the question to what extent different saving behaviour of the two income groups (labour and capital) might influence the growth path. The case that each agent is able to save by accumulating capital but not to borrow from the other is solved by Bewley(1998). Woodford(1990) went beyond BewleyÌs results both showing that equilibrium cycles are possible and exhibiting conditions under which equilibrium dynamics are chaotic. The aggregate savings function need no longer be concave, so that multiple and unstable steady states can occur. The role of differential simple savings behaviour and distribution effects for stability of stationary states was investigated in Bñhm and Kaas(2000). They demonstrated that the economy exhibits unstable steady states and fluctuations if the income distribution varies sufficiently and if shareholders save more than workers. A central question of this paper is whether using and/or un-using of a foreign investment change the qualitative properties of a growth path of the dynamical economic system. The analysis will be provided in the two steps: First, a stability the economic system without a foreign financing will be analysed by the behaviour of the eigenvalues of the Jacobian matrix; Second, the economic system with a foreign financing will be analysed by the Hopf bifurcation.

Suggested Citation

  • Miloslav S. Vosvrda, 2001. "Bifurcation Routes and Economic Stability," Computing in Economics and Finance 2001 132, Society for Computational Economics.
  • Handle: RePEc:sce:scecf1:132

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Author Miloslav, 2001. "Bifurcation Routes in Financial Markets," Finance 0109001, EconWPA.
    2. Andrei Silviu DOSPINESCU, 2012. "The Behavior Of Prices As A Response To Structural Changes - The Role Of The Economic Transmission Mechanisms In Explaining The Observed Behavior," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 201-217, December.

    More about this item


    foreign investment phenomenon; system of the nonlinear differential equations; capital/output ratio parameter feedback; the Hopf bifurcation;

    JEL classification:

    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.