IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Evaluating Real Business Cycle Models Using Likelihood Methods

Listed author(s):
  • John Landon-Lane

    (The University of New South Wales)

One of the biggest issues in using likelihood methods to evaluate and compare Real Business Cycle models is the lack of stochastic components, or lack of dimensionality, in the models. There have been a number of approaches to remedy this problem. One method is to add stochastic elements such as measurement errors to the model so that there are as many stochastic terms in the model as variables. Another approach is to compute the likelihood using only subsets of variables at a time.This paper describes a method that directly computes a likelihood function for an RBC model, via its state-space representation, using all of the information available without having to add arbitrary stochastic elements. The state-space representation for the model is obtained using a linear-quadratic approximation. In the state-space representation all of the variables are represented as linear functions of the state variables. The state variables include the stochastic elements of the model. Independent indices of the variables are then used to compute the likelihood function thus allowing for information from all of the variables in the modle to be use in computing the likelihood function. The independent indices are computed using a canonical decomposition procedure. It is shown how this method can be extended to the problem where the relationship between the state variables and the observed variables are non-linear. A standard RBC model is evaluated and the linear and non-linear case is compared.Once a full dimensional likelihood function is calculated it is possible to use Bayesian non-nested model comparison techniques to compare RBC and non-RBC models directly. It is also possible to directly compare non-nested models across sub-samples of the data as well as across the whole sample. This paper shows how these procedures can be implemented using standard Markov chain Monte Carlo techniques.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2000 with number 309.

in new window

Date of creation: 05 Jul 2000
Handle: RePEc:sce:scecf0:309
Contact details of provider: Postal:
CEF 2000, Departament d'Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas, 25,27, 08005, Barcelona, Spain

Fax: +34 93 542 17 46
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:309. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.