IDEAS home Printed from https://ideas.repec.org/p/rye/wpaper/wp006.html

Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data

Author

Listed:
  • Cathy Ning

    (Department of Economics, Ryerson University, Toronto, Canada)

  • Dinghai Xu

    (Department of Economics, University of Waterloo, Waterloo, Ontario, Canada)

  • Tony Wirjanto

    (School of Accounting & Finance and Department of Statistics & Actuarial Science,University of Waterloo, Waterloo, Ontario, Canada)

Abstract

Volatility clustering is a well-known stylized feature of financial asset returns. In this paper, we investigate the asymmetric pattern of volatility clustering on both the stock and foreign exchange rate markets. To this end, we employ copula-based semi-parametric univariate time-series models that accommodate the clusters of both large and small volatilities in the analysis. Using daily realized volatilities of the individual company stocks, stock indices and foreign exchange rates constructed from high frequency data, we find that volatility clustering is strongly asymmetric in the sense that clusters of large volatilities tend to be much stronger than those of small volatilities. In addition, the asymmetric pattern of volatility clusters continues to be visible even when the clusters are allowed to be changing over time, and the volatility clusters themselves remain persistent even after forty days.

Suggested Citation

  • Cathy Ning & Dinghai Xu & Tony Wirjanto, 2009. "Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data," Working Papers 006, Toronto Metropolitan University, Department of Economics.
  • Handle: RePEc:rye:wpaper:wp006
    as

    Download full text from publisher

    File URL: https://www.arts.ryerson.ca/economics/repec/pdfs/wp006.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    2. Pedro Antonio Martín Cervantes & Salvador Cruz Rambaud & María del Carmen Valls Martínez, 2020. "An Application of the SRA Copulas Approach to Price-Volume Research," Mathematics, MDPI, vol. 8(11), pages 1-28, October.
    3. Sahil Aggarwal, 2013. "The Uncovered Interest Rate Parity Puzzle in the Foreign Exchange Market," Working Papers 13-07, New York University, Leonard N. Stern School of Business, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rye:wpaper:wp006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doosoo Kim (email available below). General contact details of provider: https://edirc.repec.org/data/deryeca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.