IDEAS home Printed from https://ideas.repec.org/p/rye/wpaper/wp006.html
   My bibliography  Save this paper

Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data

Author

Listed:
  • Cathy Ning

    () (Department of Economics, Ryerson University, Toronto, Canada)

  • Dinghai Xu

    () (Department of Economics, University of Waterloo, Waterloo, Ontario, Canada)

  • Tony Wirjanto

    () (School of Accounting & Finance and Department of Statistics & Actuarial Science,University of Waterloo, Waterloo, Ontario, Canada)

Abstract

Volatility clustering is a well-known stylized feature of financial asset returns. In this paper, we investigate the asymmetric pattern of volatility clustering on both the stock and foreign exchange rate markets. To this end, we employ copula-based semi-parametric univariate time-series models that accommodate the clusters of both large and small volatilities in the analysis. Using daily realized volatilities of the individual company stocks, stock indices and foreign exchange rates constructed from high frequency data, we find that volatility clustering is strongly asymmetric in the sense that clusters of large volatilities tend to be much stronger than those of small volatilities. In addition, the asymmetric pattern of volatility clusters continues to be visible even when the clusters are allowed to be changing over time, and the volatility clusters themselves remain persistent even after forty days.

Suggested Citation

  • Cathy Ning & Dinghai Xu & Tony Wirjanto, 2009. "Modeling Asymmetric Volatility Clusters Using Copulas and High Frequency Data," Working Papers 006, Ryerson University, Department of Economics.
  • Handle: RePEc:rye:wpaper:wp006
    as

    Download full text from publisher

    File URL: http://economics.ryerson.ca/workingpapers/wp006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    2. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    3. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    4. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    5. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    6. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    7. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    9. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    10. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    11. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    12. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    13. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    14. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.

    More about this item

    Keywords

    Volatility clustering; Copulas; Realized volatility; High-frequency data.;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rye:wpaper:wp006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maurice Roche). General contact details of provider: http://edirc.repec.org/data/deryeca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.