IDEAS home Printed from https://ideas.repec.org/p/ris/duthrp/2013_005.html

Forecasting the NOK/USD Exchange Rate with Machine Learning Techniques

Author

Listed:
  • Theophilos Papadimitriou

    (Democritus University of Thrace, Department of Economics)

  • Periklis Gogas

    (Democritus University of Thrace, Department of Economics)

  • Vasilios Plakandaras

    (Democritus University of Thrace, Department of Economics)

Abstract

In this paper, we approximate the empirical findings of Papadamou and Markopoulos (2012) on the NOK/USD exchange rate under a Machine Learning (ML) framework. By applying Support Vector Regression (SVR) on a general monetary exchange rate model and a Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) to extract model structure, we test for the validity of popular monetary exchange rate models. We reach to mixed results since the coefficient sign of interest rate differential is in favor only with the model proposed by Bilson (1978), while the inflation rate differential coefficient sign is approximated by the model of Frankel (1979). By adopting various inflation expectation estimates, our SVR model fits actual data with a small Mean Absolute Percentage Error when an autoregressive approach excluding energy prices is adopted for inflation expectation. Overall, our empirical findings conclude that for a small open petroleum producing country such as Norway, fundamentals possess significant forecasting ability when used in exchange rate forecasting.

Suggested Citation

  • Theophilos Papadimitriou & Periklis Gogas & Vasilios Plakandaras, 2013. "Forecasting the NOK/USD Exchange Rate with Machine Learning Techniques," DUTH Research Papers in Economics 5-2013, Democritus University of Thrace, Department of Economics.
  • Handle: RePEc:ris:duthrp:2013_005
    as

    Download full text from publisher

    File URL: http://utopia.duth.gr/~vplakand/Forecasting%20the%20NOK_USD%20Exchange%20Rate%20with%20Machine%20Learning%20Techniques.docx
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Plakandaras, Vasilios & Gupta, Rangan & Wohar, Mark E., 2017. "The depreciation of the pound post-Brexit: Could it have been predicted?," Finance Research Letters, Elsevier, vol. 21(C), pages 206-213.
    3. Christina Christou & Rangan Gupta & Christis Hassapis & Tahir Suleman, 2018. "The role of economic uncertainty in forecasting exchange rate returns and realized volatility: Evidence from quantile predictive regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 705-719, November.
    4. Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas & Konstantinos Diamantaras, 2015. "Market sentiment and exchange rate directional forecasting," Algorithmic Finance, IOS Press, vol. 4(1-2), pages 69-79.
    5. Rangan Gupta & Vasilios Plakandaras, 2019. "Efficiency in BRICS Currency Markets Using Long-Spans of Data: Evidence from Model-Free Tests of Directional Predictability," Journal of Economics and Behavioral Studies, AMH International, vol. 11(1), pages 152-165.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • F30 - International Economics - - International Finance - - - General
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:duthrp:2013_005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Periklis Gogas (email available below). General contact details of provider: https://edirc.repec.org/data/didutgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.