IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Symmetric Normal Mixture GARCH

Listed author(s):
  • Carol Alexandra


    (ICMA Centre, University of Reading)

  • Emese Lazar


    (ICMA Centre, University of Reading)

Registered author(s):

    Normal mixture (NM) GARCH models are better able to account for leptokurtosis in financial data and offer a more intuitive and tractable framework for risk analysis and option pricing than student’s t-GARCH models. We present a general, symmetric parameterisation for NM-GARCH(1,1) models, derive the analytic derivatives for the maximum likelihood estimation of the model parameters and their standard errors and compute the moments of the error term. Also, we formulate specific conditions on the model parameters to ensure positive, finite conditional and unconditional second and fourth moments. Simulations quantify the potential bias and inefficiency of parameter estimates as a function of the mixing law. We show that there is a serious bias on parameter estimates for volatility components having very low weight in the mixing law. An empirical application uses moment specification tests and information criteria to determine the optimal number of normal densities in the mixture. For daily returns on three US Dollar foreign exchange rates (British pound, euro and Japanese yen) we find that, whilst normal GARCH(1,1) models fail the moment tests, a simple mixture of two normal densities is sufficient to capture the conditional excess kurtosis in the data. According to our chosen criteria, and given our simulation results, we conclude that a two regime symmetric NM-GARCH model, which quantifies volatility corresponding to ‘normal’ and ‘exceptional’ market circumstances, is optimal for these exchange rate data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Henley Business School, Reading University in its series ICMA Centre Discussion Papers in Finance with number icma-dp2003-09.

    in new window

    Length: 44 pages
    Date of creation: May 2003
    Handle: RePEc:rdg:icmadp:icma-dp2003-09
    Contact details of provider: Postal:
    PO Box 218, Whiteknights, Reading, Berks, RG6 6AA

    Phone: +44 (0) 118 378 8226
    Fax: +44 (0) 118 975 0236
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2003-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marie Pearson)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.