IDEAS home Printed from https://ideas.repec.org/p/qsh/wpaper/221816.html
   My bibliography  Save this paper

Crowdsourcing Image Annotation for Nucleus Detection and Segmentationin Computational Pathology: Evaluating Experts, Automated Methods, and the Crowd

Author

Listed:
  • Irshad, Humayun
  • Montaser-Kouhsari, , Laleh
  • Waltz, Gail
  • Bucur, Octavian
  • Jones, , Nicholas C.
  • Dong, , Fei
  • Knoblauch, , Nicholas W.
  • Andrew H Beck

Abstract

The development of tools in computational pathology to assist physicians and biomedical scientists in the diagnosis of disease requires access to high-quality annotated images for algorithm learning and evaluation. Generating high-quality expert-derived annotations is time-consuming and expensive. We explore the use of crowdsourcing for rapidly obtaining annotations for two core tasks in computational pathology: nucleus detection and nucleus segmentation. We designed and implemented crowdsourcing experiments using the CrowdFlower platform, which provides access to a large set of labor channel partners that accesses and manages millions of contributors worldwide. We obtained annotations from four types of annotators and compared concordance across these groups. We obtained: crowdsourced annotations for nucleus detection and segmentation on a total of 810 images; annotations using automated methods on 810 images; annotations from research fellows for detection and segmentation on 477 and 455 images, respectively; and expert pathologist-derived annotations for detection and segmentation on 80 and 63 images, respectively. For the crowdsourced annotations, we evaluated performance across a range of contributor skill levels (1, 2, or 3). The crowdsourced annotations (4,860 images in total) were completed in only a fraction of the time and cost required for obtaining annotations using traditional methods. For the nucleus detection task, the research fellow-derived annotations showed the strongest concordance with the expert pathologist-derived annotations (F-M =93.68%), followed by the crowd-sourced contributor levels 1,2, and 3 and the automated method, which showed relatively similar performance (F-M = 87.84%, 88.49%, 87.26%, and 86.99%, respectively). For the nucleus segmentation task, the crowdsourced contributor level 3-derived annotations, research fellow-derived annotations, and automated method showed the strongest concordance with the expert pathologist-derived annotations (F-M = 66.41%, 65.93%, and 65.36%, respectively), followed by the contributor levels 2 and 1 (60.89% and 60.87%, respectively). When the research fellows were used as a gold-standard for the segmentation task, all three contributor levels of the crowdsourced annotations significantly outperformed the automated method (F-M = 62.21%, 62.47%, and 65.15% vs. 51.92%). Aggregating multiple annotations from the crowd to obtain a consensus annotation resulted in the strongest performance for the crowd-sourced segmentation. For both detection and segmentation, crowd-sourced performance is strongest with small images (400 x 400 pixels) and degrades significantly with the use of larger images (600 x 600 and 800 x 800 pixels). We conclude that crowdsourcing to non-experts can be used for large-scale labeling microtasks in computational pathology and offers a new approach for the rapid generation of labeled images for algorithm development and evaluation.

Suggested Citation

  • Irshad, Humayun & Montaser-Kouhsari, , Laleh & Waltz, Gail & Bucur, Octavian & Jones, , Nicholas C. & Dong, , Fei & Knoblauch, , Nicholas W. & Andrew H Beck, "undated". "Crowdsourcing Image Annotation for Nucleus Detection and Segmentationin Computational Pathology: Evaluating Experts, Automated Methods, and the Crowd," Working Paper 221816, Harvard University OpenScholar.
  • Handle: RePEc:qsh:wpaper:221816
    as

    Download full text from publisher

    File URL: http://scholar.harvard.edu/humayun/node/221816
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:221816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Brandon (email available below). General contact details of provider: https://edirc.repec.org/data/cbrssus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.