IDEAS home Printed from https://ideas.repec.org/p/qsh/wpaper/166016.html
   My bibliography  Save this paper

Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster

Author

Listed:
  • Wühr, M.
  • Haas, W.
  • McAlister, G. C.
  • Peshkin, L.
  • Rad, R.
  • Kirschner, M. W.
  • Gygi, S. P.

Abstract

Isobaric labeling strategies, such as isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tags (TMT), have promised to dramatically increase the power of quantitative proteomics. However, when applied to complex mixtures, both the accuracy and precision are undermined by interfering peptide ions that coisolate and cofragment with the target peptide. Additional gas-phase isolation steps, such as proton-transfer ion-ion reactions (PTR) or higher-order MS3 scans, can almost completely eliminate this problem. Unfortunately, these methods come at the expense of decreased acquisition speed and sensitivity. Here we present a method that allows accurate quantification of TMT-labeled peptides at the MS2 level without additional ion purification. Quantification is based on the fragment ion cluster that carries most of the TMT mass balance. In contrast to the use of low m/z reporter ions, the localization of these complement TMT (TMT(C)) ions in the spectrum is precursor-specific; coeluting peptides do not generally affect the measurement of the TMT(C) ion cluster of interest. Unlike the PTR or MS3 strategies, this method can be implemented on a wide range of high-resolution mass spectrometers like the quadrupole Orbitrap instruments (QExactive). A current limitation of the method is that the efficiency of TMT(C) ion formation is affected by both peptide sequence and peptide ion charge state; we discuss potential routes to overcome this problem. Finally, we show that the complement reporter ion approach allows parallelization of multiplexed quantification and therefore holds the potential to multiply the number of distinct peptides that can be quantified in a given time frame.

Suggested Citation

  • Wühr, M. & Haas, W. & McAlister, G. C. & Peshkin, L. & Rad, R. & Kirschner, M. W. & Gygi, S. P., "undated". "Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster," Working Paper 166016, Harvard University OpenScholar.
  • Handle: RePEc:qsh:wpaper:166016
    as

    Download full text from publisher

    File URL: http://scholar.harvard.edu/martin_wuehr/node/166016
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:166016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Brandon (email available below). General contact details of provider: https://edirc.repec.org/data/cbrssus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.