IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Performance of the Barter, the Differential Evolution and the Simulated Annealing Methods of Global Optimization on Some New and Some Old Test Functions

Listed author(s):
  • Mishra, SK

In this paper we compare the performance of the Barter method, a newly introduced population-based (stochastic) heuristic to search the global optimum of a (continuous) multi-modal function, with that of two other well-established and very powerful methods, namely, the Simulated Annealing (SA) and the Differential Evolution (DE) methods of global optimization. In all, 87 benchmark functions have been optimized 89 times. The DE succeeds in 82 cases, the Barter succeeds in 63 cases, while the Simulated Annealing method succeeds for a modest number of 51 cases. The DE as well as Barter methods are unstable for stochastic functions (Yao-Liu#7 and Fletcher-Powell functions). In particular, Bukin-6, Perm-2 and Mishra-2 functions have been hard for all the three methods. Seen as such, the barter method is much inferior to the DE, but it performs better than SA. A comparison of the Barter method with the Repulsive Particle Swarm method has indicated elsewhere that they are more or less comparable. The convergence rate of the Barter method is slower than the DE as well as the SA. This is because of the difficulty of ‘double coincidence’ in bartering. Barter activity takes place successfully in less than one percent trials. It may be noted that the DE and the SA have a longer history behind them and they have been improved many times. In the present exercise, the DE version used here employs the latest (available) schemes of crossover, mutation and recombination. In comparison to this, the Barter method is a nascent one. We need a thorough investigation into the nature and performance of the Barter method. We have found that when the DE optimizes, the terminal population is homogenous while in case of the Barter method it is not so. This property of the Barter method has several implications with respect to the Agent-Based Computational Economics

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 639.

in new window

Date of creation: 01 Nov 2006
Handle: RePEc:pra:mprapa:639
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:639. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.