IDEAS home Printed from
   My bibliography  Save this paper

On the Duality of Certain Characterizations of the Exponential and the Geometric Distributions


  • Panaretos, John


Let {N(t), t>0} be a homogeneous Poisson process with parameter λ=1. Let Z be a nonnegative random variable which is distributed independently of {N(t), t>0} according to a mixed game distribution. Xekalaki and Panaretos (1988) showed that the form of F (the mixing distribution) is uniquely determined by that of the distribution of N(Z). They also showed that certain characterizations of N(Z) can be derived through characterizations of F. In this paper it is demonstrated that through the above mentioned results a deeper insight is gained into the relationship of the distribution duals (geometric-exponential and Yule-Pareto). Two characterization theorems are also shown for the exponential distribution which can be thought of as variants of Govindarajulu's (1966) and Crawford's (1966) characterizations of the exponential distribution as the corresponding characterizing conditions are weaker than those used by them

Suggested Citation

  • Panaretos, John, 1990. "On the Duality of Certain Characterizations of the Exponential and the Geometric Distributions," MPRA Paper 6259, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:6259

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.