IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A comparison of nominal regression and logistic regression for contingency tables, including the 2 × 2 × 2 case in causality

  • Colignatus, Thomas

Logistic regression (LR) is one of the most used estimation techniques for nominal data collected in contingency tables, and the question arises how the recently proposed concept of nominal correlation and regression (NCR) relates to it. (1) LR targets the cells in the contingency table while NCR targets only the variables. (2) Where the methods seem to overlap, such as in the 2 × 2 × 2 case, there still is the difference between the use of categories by LR (notably the categories Success, Cause and Confounder) and the use of variables by NCR (notably the variables Effect, Truth and Confounding). (3) Since LR looks for the most parsimonious model, the analysis might be helped by NCR, that is very parsimonious since it uses only the variables and not all the cells of the contingency table. (4) While LR may generate statistically significant regressions, NRC may show that the correlation still is low. (5) Risk difference regression may be a bridge to understand more about the difference between LR and NCR. (6) The use of LR and NCR next to each other may help to focus on the research question and the amount of detail required for it.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/3615/1/MPRA_paper_3615.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 3615.

as
in new window

Length:
Date of creation: 19 Jun 2007
Date of revision: 19 Jun 2007
Handle: RePEc:pra:mprapa:3615
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Colignatus, Thomas, 2007. "A measure of association (correlation) in nominal data (contingency tables), using determinants," MPRA Paper 2662, University Library of Munich, Germany, revised 10 Apr 2007.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3615. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.