IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/21386.html
   My bibliography  Save this paper

Levy Subordinator Model of Default Dependency

Author

Listed:
  • Balakrishna, B S

Abstract

The article presents a model of default dependency based on Levy subordinator. It is a tractable one-factor model with an architecture similar to that of the standard Gaussian copula model, providing easy calibration to individual hazard rate curves and efficient pricing with Fast Fourier Transform techniques. The subordinator is a stable Levy process with a probability distribution function known as the Levy distribution. The model provides a reasonable fit to market data with two parameters necessary to assess dependency risk, a measure of correlation and a measure of catastrophe.

Suggested Citation

  • Balakrishna, B S, 2010. "Levy Subordinator Model of Default Dependency," MPRA Paper 21386, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:21386
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/21386/1/MPRA_paper_21386.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/22090/1/MPRA_paper_22090.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/24055/2/MPRA_paper_24055.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2009. "Credit models and the crisis, or: how I learned to stop worrying and love the CDOs," Papers 0912.5427, arXiv.org, revised Feb 2010.
    2. Alexander Chapovsky & Andrew Rennie & Pedro Tavares, 2007. "Stochastic Intensity Modeling For Structured Credit Exotics," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 3, pages 41-60, World Scientific Publishing Co. Pte. Ltd..
    3. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2008. "Default correlation, cluster dynamics and single names: The GPCL dynamical loss model," Papers 0812.4163, arXiv.org.
    4. Balakrishna, B S, 2008. "Levy Density Based Intensity Modeling of the Correlation Smile," MPRA Paper 14922, University Library of Munich, Germany, revised 06 Apr 2009.
    5. Alexander Chapovsky & Andrew Rennie & Pedro Tavares, 2007. "Stochastic Intensity Modeling For Structured Credit Exotics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 633-652.
    6. Giuseppe Di Graziano & L. C. G. Rogers, 2009. "A Dynamic Approach To The Modeling Of Correlation Credit Derivatives Using Markov Chains," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 45-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishna, B S, 2010. "Levy Subordinator Model: A Two Parameter Model of Default Dependency," MPRA Paper 26274, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishna, B S, 2010. "Levy Subordinator Model: A Two Parameter Model of Default Dependency," MPRA Paper 26274, University Library of Munich, Germany.
    2. Yinghui Dong & Kam C. Yuen & Guojing Wang & Chongfeng Wu, 2016. "A Reduced-Form Model for Correlated Defaults with Regime-Switching Shot Noise Intensities," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 459-486, June.
    3. Vanini, Paolo, 2012. "Fiancial Innovation, Structuring and Risk Transfer," MPRA Paper 42536, University Library of Munich, Germany.
    4. Balakrishna, B S, 2008. "Levy Density Based Intensity Modeling of the Correlation Smile," MPRA Paper 14922, University Library of Munich, Germany, revised 06 Apr 2009.
    5. Shaojie Deng & Kay Giesecke & Tze Leung Lai, 2012. "Sequential Importance Sampling and Resampling for Dynamic Portfolio Credit Risk," Operations Research, INFORMS, vol. 60(1), pages 78-91, February.
    6. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    7. Chao Xu & Yinghui Dong & Guojing Wang, 2019. "The pricing of defaultable bonds under a regime-switching jump-diffusion model with stochastic default barrier," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(9), pages 2185-2205, May.
    8. Herbertsson, Alexander & Frey, Rüdiger, 2016. "Cds Index Options Under Incomplete Information," Working Papers in Economics 685, University of Gothenburg, Department of Economics.
    9. Damien Ackerer & Damir Filipović, 2020. "Linear credit risk models," Finance and Stochastics, Springer, vol. 24(1), pages 169-214, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.