IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/20835.html
   My bibliography  Save this paper

The Inequality Process vs. The Saved Wealth Model. Two Particle Systems of Income Distribution; Which Does Better Empirically?

Author

Listed:
  • Angle, John

Abstract

The Inequality Process (IP) is a stochastic particle system in which particles are randomly paired for wealth exchange. A coin toss determines which particle loses wealth to the other in a randomly paired encounter. The loser gives up a fixed share of its wealth, a positive quantity. That share is its parameter, ω_ψ, in the ψth equivalence class of particles. The IP was derived from verbal social science theory that designates the empirical referent of (1-ω_ψ) as worker productivity, operationalized as worker education. Consequently, the stationary distribution of wealth of the IP in which particles can have different values of ω (like workers with different educations) is obliged to fit the distribution of labor income conditioned on education. The hypothesis is that when a) the stationary distribution of wealth in the ψth equivalence class of particles is fitted to the distribution of labor income of workers at the ψth level of education, and b) the fraction of particles in the ψth equivalence class equals the fraction of workers at the ψth level of education, then c) the model's stationary distributions fit the corresponding empirical distributions, and d) estimated (1-ω_ψ) increases with level of education. The Saved Wealth Model (SW) was proposed as a modification of the particle system model of the Kinetic Theory of Gases (KTG). The SW is isomorphic to the IP up to the stochastic driver of wealth exchange between particles. The present paper shows that 1) the stationary distributions of both particle systems pass test c): they fit the distribution of U.S. annual wage and salary income conditioned on education over four decades, 2) the parameter estimates of the fits differ by particle system, 3) both particle systems pass test d), but 4) the IP's overall fits are better than the SW's because 5) the IP's stationary distribution conditioned on larger (1-ω_ψ) has a heavier tail than the SW's fitting the distribution of wage income of the more educated better, and 6) since the level of education in the U.S. labor force rose, the IP's fit advantage increased over time.

Suggested Citation

  • Angle, John, 2010. "The Inequality Process vs. The Saved Wealth Model. Two Particle Systems of Income Distribution; Which Does Better Empirically?," MPRA Paper 20835, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:20835
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/20835/1/MPRA_paper_20835.pdf
    File Function: original version
    Download Restriction: no

    More about this item

    Keywords

    labor income distribution; goodness of fit; Inequality Process; particle system model; Saved Wealth Model;

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • B59 - Schools of Economic Thought and Methodology - - Current Heterodox Approaches - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20835. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.