IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Path properties of (N;d)-Gaussian random fields

Listed author(s):
  • Yong-Kab Choi


    (Department of Mathematics, Gyeongsang National University and School of Mathematics and Statistics, Carleton University)

Registered author(s):

    In this paper, we investigate several sample path properties on the increments of (N,d)-Gaussian random fields and also we obtain the law of iterated logarithm for the Gaussian random field, via estimating upper and lower bounds of large deviation probabilities on suprema of the (N,d)- Gaussian random fields.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: First version, 2004
    Download Restriction: no

    Paper provided by Département des sciences administratives, UQO in its series RePAd Working Paper Series with number lrsp-TRS393.

    in new window

    Length: 25 pages
    Date of creation: 01 Apr 2004
    Handle: RePEc:pqs:wpaper:0192005
    Contact details of provider: Postal:
    Pavillon Lucien Brault, 101 rue Saint Jean-Bosco, Gatineau (Québec) J8Y 3G5

    Phone: (819) 595-3900
    Fax: (819) 773-1747
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lin, Zheng Yan & Choi, Yong-Kab, 1999. "Some limit theorems for fractional Lévy Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 229-244, August.
    2. Csáki, E. & Csörgo, M. & Lin, Z. Y. & Révész, P., 1991. "On infinite series of independent Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 39(1), pages 25-44, October.
    3. Ortega, Joaquín, 1984. "On the size of the increments of nonstationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 18(1), pages 47-56, September.
    4. Szyszkowicz, Barbara, 1993. "Lp-approximations of weighted partial sum processes," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 295-308, April.
    5. Csörgo, Miklós & Lin, Zheng-Yan & Shao, Qi-Man, 1995. "On moduli of continuity for local times of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 58(1), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0192005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Calmes)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.