IDEAS home Printed from https://ideas.repec.org/p/pqs/wpaper/0062005.html
   My bibliography  Save this paper

Convergence Of Markov Chain Approximations To Stochastic Reaction Diffusion Equations

Author

Listed:
  • Michael A. Kouritzin

    (Department of Mathematical Sciences, University of Alberta)

  • Hongwei Long

    (Department of Mathematical Sciences, University of Alberta)

Abstract

In the context of simulating the transport of a chemical or bacterial contaminant through a moving sheet of water, we extend a well established method of approximating reaction-diffusion equations with Markov chains by allowing convection, certain Poisson measure driving sources and a larger class of reaction functions. Our alterations also feature dramatically slower Markov chain state change rates often yielding a ten to one hundred fold simulation speed increase over the previous version of the method as evidenced in our computer implementations. On a weighted L2 Hilbert space chosen to symmetrize the elliptic operator, we consider existence of and convergence to pathwise unique mild solutions of our stochastic reaction-diffusion equation. Our main convergence result, a quenched law of large numbers, establishes convergence in probability of our Markov chain approximations for each fixed path of our driving Poisson measure source. As a consequence, we also obtain the annealed law of large numbers establishing convergence in probability of our Markov chains to the solution of the stochastic reaction-diffusion equation while considering the Poisson source as a random medium for the Markov chains.

Suggested Citation

  • Michael A. Kouritzin & Hongwei Long, 2001. "Convergence Of Markov Chain Approximations To Stochastic Reaction Diffusion Equations," RePAd Working Paper Series lrsp-TRS361, Département des sciences administratives, UQO.
  • Handle: RePEc:pqs:wpaper:0062005
    as

    Download full text from publisher

    File URL: http://www.repad.org/ca/on/lrsp/TRS361.pdf
    File Function: First version, 2001
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pqs:wpaper:0062005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Calmes (email available below). General contact details of provider: https://edirc.repec.org/data/dsuqoca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.