IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/euv7f_v2.html
   My bibliography  Save this paper

Revisiting the social determinants of health with explainable AI: a cross-country perspective

Author

Listed:
  • yan, jiani

Abstract

In social science and epidemiological research, individual risk factors for mortality are often examined in isolation, while approaches that consider multiple risk factors simultaneously remain less common. Using the Health and Retirement Study in the US, the Survey of Health, Ageing and Retirement in Europe and the English Longitudinal Study of Ageing in the UK, we explore the predictability of death with machine learning and explainable AI algorithms, which integrate explanation and prediction simultaneously. Specifically, we extract information from all datasets in seven health-related domains including demographic, socioeconomic, psychology, social connections, childhood adversity, adulthood adversity, and health behaviours. Our self-devised algorithm reveals consistent domain-level patterns across datasets, with demography and socioeconomic factors being the most significant. However, at the individual risk-factor level, notable differences emerge, emphasising the context-specific nature of certain predictors.

Suggested Citation

  • yan, jiani, 2025. "Revisiting the social determinants of health with explainable AI: a cross-country perspective," SocArXiv euv7f_v2, Center for Open Science.
  • Handle: RePEc:osf:socarx:euv7f_v2
    DOI: 10.31219/osf.io/euv7f_v2
    as

    Download full text from publisher

    File URL: https://osf.io/download/68ed5e4b168fd36c79bde44a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/euv7f_v2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin W. Domingue & Klint Kanopka & Radhika Kapoor & Steffi Pohl & R. Philip Chalmers & Charles Rahal & Mijke Rhemtulla, 2024. "The InterModel Vigorish as a Lens for Understanding (and Quantifying) the Value of Item Response Models for Dichotomously Coded Items," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 1034-1054, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:socarx:pt6b2_v1 is not listed on IDEAS

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:euv7f_v2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.