IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/5642u_v1.html
   My bibliography  Save this paper

Beyond Expert Judgment: An Explainable Framework for Truth Discovery, Weak Supervision, and Learning-Based Ranking in Open-Source Intelligence Risk Identification

Author

Listed:
  • MENG, WEI

Abstract

In open-source intelligence (OSINT) research, traditional risk identification methods reliant on expert scoring face growing challenges due to their high subjectivity, cost, and lack of scalability. This study aims to propose and validate an algorithmic framework that transcends expert judgment. Centered on truth discovery, weakly supervised learning, and learning-based ranking, it enables automated, explainable risk identification within complex, multi-source heterogeneous data. The study first constructs a hierarchical-quota sampling system, acquiring and deduplicating data from four source categories: institutional authorities, official statements, mainstream and international reports, and visual materials. Subsequently, a truth discovery algorithm estimates source credibility to replace expert weighting. Weakly supervised labeling functions generate initial annotations, which are then aggregated by generative models to form robust labels. Finally, a learning ranking model dynamically prioritizes risk trajectories, with explainability ensured through Explainable AI techniques (e.g., SHAP, Grad-CAM). Results demonstrate that this framework reliably identifies risk signals across multiple time windows and control conditions. The classifier achieves PR-AUC improvements exceeding expert baselines, with average absolute error in inflection point localization maintained below 1 hour. It exhibits high consistency and robustness across cross-domain datasets. The study concludes that algorithmic expert-scoring replacement not only excels in accuracy and efficiency but also significantly outperforms traditional models in transparency and reproducibility, offering a systematic, scalable, and cutting-edge approach for OSINT risk research.

Suggested Citation

  • Meng, Wei, 2025. "Beyond Expert Judgment: An Explainable Framework for Truth Discovery, Weak Supervision, and Learning-Based Ranking in Open-Source Intelligence Risk Identification," SocArXiv 5642u_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:5642u_v1
    DOI: 10.31219/osf.io/5642u_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/68c4fe28a73c85c0c9e0ffae/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5642u_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:5642u_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.