IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A simple dynamic model for limited dependent variables

Listed author(s):
Registered author(s):

    A dynamic model for limited dependent variables is proposed, which estimation does not rely on simulation methods. A latent conditional mean function which is measureable with respect to past and observable information circumvents the solution of a T-dimensional integral and yields a simple and computationally parsimonious maximum likelihood estimation. It can be shown that the latent process implied by the limited dependent autoregressive moving average model is covariance stationary. Parameter estimates of this model are shown to be consistent but inefficient estimates of the parameters of a standard latent autoregressive moving average model, for which a maximum likelihood estimator is computationally burdensome. Monte Carlo evidence is provided to assess parameter estimates based on the limited dependent ARMA given the data generation process is a standard latent ARMA. The results indicate that the asymptotic properties hold quite nicely in small samples. An application based on IBM transaction price changes from the NASDAQ demonstrates a potential use of the model suggested here.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Economics Group, Nuffield College, University of Oxford in its series Economics Papers with number 2001-W11.

    in new window

    Length: 24 pages
    Date of creation: 16 Jul 2001
    Handle: RePEc:nuf:econwp:0111
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.