IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/34712.html

A Model of Artificial Jagged Intelligence

Author

Listed:
  • Joshua S. Gans

Abstract

Generative AI systems often display highly uneven performance across tasks that appear “nearby”: they can be excellent on one prompt and confidently wrong on another with only small changes in wording or context. We call this phenomenon Artificial Jagged Intelligence (AJI). This paper develops a tractable economic model of AJI that treats adoption as an information problem: users care about local reliability, but typically observe only coarse, global quality signals. In a baseline one-dimensional landscape, truth is a rough Brownian process, and the model “knows” scattered points drawn from a Poisson process. The model interpolates optimally, and the local error is measured by posterior variance. We derive an adoption threshold for a blind user, show that experienced errors are amplified by the inspection paradox, and interpret scaling laws as denser coverage that improves average quality without eliminating jaggedness. We then study mastery and calibration: a calibrated user who can condition on local uncertainty enjoys positive expected value even in domains that fail the blind adoption test. Modelling mastery as learning a reliability map via Gaussian process regression yields a learning-rate bound driven by information gain, clarifying when discovering “where the model works” is slow. Finally, we study how scaling interacts with discoverability: when calibrated signals and user mastery accelerate the harvesting of scale improvements, and when opacity can make gains from scaling effectively invisible.

Suggested Citation

  • Joshua S. Gans, 2026. "A Model of Artificial Jagged Intelligence," NBER Working Papers 34712, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:34712
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w34712.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:34712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.