IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/33893.html
   My bibliography  Save this paper

Capability Inversion: The Turing Test Meets Information Design

Author

Listed:
  • Joshua S. Gans

Abstract

This paper analyzes the design of tests to distinguish human from artificial intelligence through the lens of information design. We identify a fundamental asymmetry: while AI systems can strategically underperform to mimic human limitations, they cannot overperform beyond their capabilities. This leads to our main contribution—the concept of capability inversion domains, where AIs fail detection not through inferior performance, but by performing “suspiciously well” when they overestimate human capabilities. We show that if an AI significantly overestimates human ability in even one domain, it cannot reliably pass an optimally designed test. This insight reverses conventional intuition: effective tests should target not what humans do well, but the specific patterns of human imperfection that AIs systematically misunderstand. We identify structural sources of persistent misperception—including the difficulty of learning about failure from successful examples and fundamental differences in embodied experience—that make certain capability inversions exploitable for detection even as AI systems improve.

Suggested Citation

  • Joshua S. Gans, 2025. "Capability Inversion: The Turing Test Meets Information Design," NBER Working Papers 33893, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:33893
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w33893.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:33893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.