IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Testing Independence for a Large Number of High Dimensional Random Vectors

  • Guangming Pan

    ()

  • Jiti Gao

    ()

  • Yanrong Yang
Registered author(s):

Capturing dependence among a large number of high dimensional random vectors is a very important and challenging problem. By arranging n random vectors of length p in the form of a matrix, we develop a linear spectral statistic of the constructed matrix to test whether the n random vectors are independent or not. Specifically, the proposed statistic can also be applied to n random vectors, each of whose elements can be written as either a linear stationary process or a linear combination of a random vector with independent elements. The asymptotic distribution of the proposed test statistic is established in the case where both p and n go to infinity at the same order. In order to avoid estimating the spectrum of each random vector, a modified test statistic, which is based on splitting the original n vectors into two equal parts and eliminating the term that contains the inner structure of each random vector or time series, is constructed. The facts that the limiting distribution is a normal distribution and there is no need to know the inner structure of each investigated random vector result in simple implementation of the constructed test statistic. Simulation results demonstrate that the proposed test is powerful against many common dependent cases. An empirical application to detecting dependence of the closed prices from several stocks in S&P 500 also illustrates the applicability and effectiveness of our provided test.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2013/wp09-13.pdf
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 9/13.

as
in new window

Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:msh:ebswps:2013-9
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Web page: http://www.buseco.monash.edu.au/depts/ebs/
Email:


More information through EDIRC

Order Information: Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Email:


No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2013-9. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.