IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2010-20.html
   My bibliography  Save this paper

Forecasting Compositional Time Series with Exponential Smoothing Methods

Author

Listed:
  • Anne B. Koehler
  • Ralph D. Snyder

    ()

  • J. Keith Ord
  • Adrian Beaumont

Abstract

Compositional time series are formed from measurements of proportions that sum to one in each period of time. We might be interested in forecasting the proportion of home loans that have adjustable rates, the proportion of nonagricultural jobs in manufacturing, the proportion of a rock's geochemical composition that is a specific oxide, or the proportion of an election betting market choosing a particular candidate. A problem may involve many related time series of proportions. There could be several categories of nonagricultural jobs or several oxides in the geochemical composition of a rock that are of interest. In this paper we provide a statistical framework for forecasting these special kinds of time series. We build on the innovations state space framework underpinning the widely used methods of exponential smoothing. We couple this with a generalized logistic transformation to convert the measurements from the unit interval to the entire real line. The approach is illustrated with two applications: the proportion of new home loans in the U.S. that have adjustable rates; and four probabilities for specified candidates winning the 2008 democratic presidential nomination.

Suggested Citation

  • Anne B. Koehler & Ralph D. Snyder & J. Keith Ord & Adrian Beaumont, 2010. "Forecasting Compositional Time Series with Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 20/10, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2010-20
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp20-10.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    4. Stephan R. Sain, 2002. "Zero-Bias Locally Adaptive Density Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 441-460.
    5. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    6. Abramson, Ian S., 1982. "Arbitrariness of the pilot estimator in adaptive kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 562-567, December.
    7. Tarn Duong & Martin L. Hazelton, 2005. "Cross-validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506.
    8. Holmes, Michael P. & Gray, Alexander G. & Isbell Jr., Charles Lee, 2010. "Fast kernel conditional density estimation: A dual-tree Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1707-1718, July.
    9. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    10. Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
    11. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    12. Philippe Vieu, 1999. "Multiple Kernel Procedure: an Asymptotic Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 61-72.
    13. M. Jácome & I. Gijbels & R. Cao, 2008. "Comparison of presmoothing methods in kernel density estimation under censoring," Computational Statistics, Springer, vol. 23(3), pages 381-406, July.
    14. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    15. Horová Ivana & Vieu Philippe & Zelinka Jiří, 2002. "Optimal Choice Of Nonparametric Estimates Of A Density And Of Its Derivatives," Statistics & Risk Modeling, De Gruyter, vol. 20(1-4), pages 355-378, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.

    More about this item

    Keywords

    compositional time series; innovations state space models; exponential smoothing; forecasting proportions;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.