IDEAS home Printed from
   My bibliography  Save this paper

Use of Recurrent Neural Networks for Strategic Data Mining of Sales


  • Vadhavkar, Sanjeev
  • Shanmugasundaram, Jayavel
  • Gupta, Amar
  • Prasad, M.V. Nagendra


An increasing number of organizations are involved in the development of strategic information systems for effective linkages with their suppliers, customers, and other channel partners involved in transportation, distribution, warehousing and maintenance activities. An efficient inter-organizational inventory management system based on data mining techniques is a significant step in this direction. This paper discusses the use of neural network based data mining and knowledge discovery techniques to optimize inventory levels in a large medical distribution company. The paper defines the inventory patterns, describes the process of constructing and choosing an appropriate neural network, and highlights problems related to mining of very large quantities of data. The paper identifies the strategic data mining techniques used to address the problem of estimating the future sales of medical products using past sales data. We have used recurrent neural networks to predict future sales because of their power to generalize trends and their ability to store relevant information about past sales. The paper introduces the problem domain and describes the implementation of a distributed recurrent neural network using the real time recurrent learning algorithm. We then describe the validation of this implementation by providing results of tests with well-known examples from the literature. The description and analysis of the predictions made on real world data from a large medical distribution company are then presented.

Suggested Citation

  • Vadhavkar, Sanjeev & Shanmugasundaram, Jayavel & Gupta, Amar & Prasad, M.V. Nagendra, 2002. "Use of Recurrent Neural Networks for Strategic Data Mining of Sales," Working papers 4347-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:717

    Download full text from publisher

    File URL:
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:717. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.