IDEAS home Printed from
   My bibliography  Save this paper

A Geometric Analysis of Renegar's Condition Number, and its Interplay with Conic Curvature


  • Belloni, Alexandre
  • Freund, Robert M


For a conic linear system of the form Ax ÂˆÈ K, K a convex cone, several condition measures have been extensively studied in the last dozen years. Among these, Renegar's condition number C(A) is arguably the most prominent for its relation to data perturbation, error bounds, problem geometry, and computational complexity of algorithms. Nonetheless, C(A) is a representation-dependent measure which is usually difficult to interpret and may lead to overly-conservative bounds of computational complexity and/or geometric quantities associated with the set of feasible solutions. Herein we show that Renegar's condition number is bounded from above and below by certain purely geometric quantities associated with A and K, and highlights the role of the singular values of A and their relationship with the condition number. Moreover, by using the notion of conic curvature, we show how Renegar's condition number can be used to provide both lower and upper bounds on the width of the set of feasible solutions. This complements the literature where only lower bounds have heretofore been developed.

Suggested Citation

  • Belloni, Alexandre & Freund, Robert M, 2007. "A Geometric Analysis of Renegar's Condition Number, and its Interplay with Conic Curvature," Working papers 37303, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:37303

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Vial, Jean-Philippe, 1982. "Strong convexity of sets and functions," Journal of Mathematical Economics, Elsevier, vol. 9(1-2), pages 187-205, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Renegar's condition number;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:37303. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.