IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Divide, Allocate et Impera: Comparing Allocation Strategies via Simulation

Listed author(s):
  • Paola CHIODINI


  • Giancarlo MANZI


  • Bianca Maria MARTELLI




In stratified sampling, the problem of optimally allocating the sample size is of primary importance, especially when reliable estimates are required both for the overall population and for subdomains. To this purpose, in this paper we compare multiple standard allocation mechanisms. In particular, standard allocation methods are compared with an allocation method that has been recently adopted by the Italian National Statistical Institute: the Robust Optimal Allocation with Uniform Stratum Threshold (ROAUST) method. Standard allocation methods considered in this comparison are: (i) the optimal Neyman allocation, (ii) the multivariate Neyman allocation, (iii) the Costa allocation, (iv) the Bankier allocation, and (v) the Interior Point Non Linear Programming (IPNLP) allocation. Results show that the optimal Neyman allocation method outperforms the ROAUST method at the overall sample level, whereas the latter method performs better at the stratum level. Some results on the Nonlinear Programming method are particularly interesting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano in its series Departmental Working Papers with number 2017-09.

in new window

Date of creation: 04 May 2017
Handle: RePEc:mil:wpdepa:2017-09
Contact details of provider: Postal:
Via Conservatorio 7, I-20122 Milan - Italy

Phone: +39 02 50321522
Fax: +39 02 50321505
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2017-09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEMM Working Papers)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.