IDEAS home Printed from https://ideas.repec.org/p/mar/magkse/202240.html
   My bibliography  Save this paper

Measuring Gender Differences in Personalities through Natural Language in the Labor Force: Application of the 5-Factor Model

Author

Listed:
  • Dania Eugenidis

    (Justus Liebig University Giessen)

  • David Lenz

    (Justus Liebig University Giessen)

Abstract

Gender stereotypes still play a major role in the perception and representation of people in the workplace. Measuring the effects of those stereotypes quantitatively is very hard though. Traditional methods, such as questionnaires, struggle to provide the full picture, for example through misunderstanding, omission or incorrect answering of questions. However, evidence-based policy making requires accurate indicators of gender inequalities to promote equality. We present a framework measuring gender stereotypes on company level using publicly available big data. Specifically, we analyse the one million websites of all German companies using natural language processing with regard to differences in their portrayal of genders through the use of certain terms. We then contextualize the gender stereotype measures following the personality traits of the Five Factor Model and their sublevels. Statistical analysis of the results indicates significant stereotypes within personality traits for large portions of the sample. The qualitative differences in gender presentation are mostly consistent with those found in the literature, which serves as a validation for the presented framework. The presented approach complements traditional quantitative measurement techniques by capturing a mainly latent level of inequality. The fully automated and comprehensive analysis of the linguistic portrayal of gender stereotypes in a corporate context is at low cost, with little delay and at a granular basis.

Suggested Citation

  • Dania Eugenidis & David Lenz, 2022. "Measuring Gender Differences in Personalities through Natural Language in the Labor Force: Application of the 5-Factor Model," MAGKS Papers on Economics 202240, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  • Handle: RePEc:mar:magkse:202240
    as

    Download full text from publisher

    File URL: https://www.uni-marburg.de/en/fb02/research-groups/economics/macroeconomics/research/magks-joint-discussion-papers-in-economics/papers/2022-papers/40-2022_eugenidis.pdf
    File Function: First 202240
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:202240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.