IDEAS home Printed from
   My bibliography  Save this paper

A Influência de Variáveis de Mercado e de Programas Governamentais na Determinação dos Preços de Produtos Agrícolas


  • Manoel Carlos de Castro Pires


Programas governamentais, como a Política de Garantia de Preços Mínimos (PGPM), podem ter importante influência na formação dos preços de produtos agrícolas. Entretanto, mudanças recentes nos instrumentos de intervenção podem ter alterado o papel destes programas na determinação dos preços. A identificação de variáveis que tenham influência sobre a determinação dos preços são particularmente importantes para o êxito no desenho de programas voltados para o setor agrícola. Este é o objetivo deste estudo, qual seja, examinar a influência de alguns fatores na determinação do preço de dois importantes produtos agrícolas: arroz e milho. O modelo trabalha com dois tipos de fatores que afetam os preços: oferta e demanda de mercado e variáveis de política governamental.

Suggested Citation

  • Manoel Carlos de Castro Pires, 2006. "A Influência de Variáveis de Mercado e de Programas Governamentais na Determinação dos Preços de Produtos Agrícolas," Discussion Papers 1221, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:1221

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Helfand, Steven M. & Levine, Edward S., 2004. "Farm size and the determinants of productive efficiency in the Brazilian Center-West," Agricultural Economics, Blackwell, vol. 31(2-3), pages 241-249, December.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    4. Alan Gelfand & Alexandra Schmidt & Sudipto Banerjee & C. Sirmans, 2004. "Nonstationary multivariate process modeling through spatially varying coregionalization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 263-312, December.
    5. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    7. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    8. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    9. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    10. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
    11. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    12. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    13. repec:sbe:breart:v:25:y:2005:i:2:a:2507 is not listed on IDEAS
    14. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1221. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fabio Schiavinatto). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.